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Figure 1: Appearance variations of a gold object, according to various roughness parameters of Student’s t-Distribution (STD) of slopes.
Thanks to a single additional parameter γ, STD generalizes the well-known Beckmann’s (when γ→∞) and GGX (when γ=2) distributions;
it provides the Smith’s analytical geometric attenuation factor (GAF) for an infinite set of distribution configurations, as well as importance
sampling functions. The curves illustrate slope distributions PST D

22 (log scale) and the corresponding GAF functions GST D
1 .

Abstract
This paper focuses on microfacet reflectance models, and more precisely on the definition of a new and more general distribution
function, which includes both Beckmann’s and GGX distributions widely used in the computer graphics community. Therefore,
our model makes use of an additional parameter γ, which controls the distribution function slope and tail height. It actually
corresponds to a bivariate Student’s t-distribution in slopes space and it is presented with the associated analytical formulation
of the geometric attenuation factor derived from Smith representation. We also provide the analytical derivations for importance
sampling isotropic and anisotropic materials. As shown in the results, this new representation offers a finer control of a wide
range of materials, while extending the capabilities of fitting parameters with captured data.

Categories and Subject Descriptors (according to ACM CCS):

1. Introduction

The representation of materials is a crucial issue for rendering real-
istic environments, and many authors have been interested in phys-
ically plausible models, not only for computer graphics but also for

many other areas such as computer vision or augmented reality. De-
spite the numerous advances in the past thirty years, the definition
of a generic mathematical description still remains a difficult chal-
lenge for several reasons: The model should be able to reproduce a
wide range of visual appearances, it should be reciprocal and pre-
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serve energy (physical plausibility), it should be straightforward to
implement and efficient with lighting simulation systems.

Amongst the existing physically plausible models, distributions
of microfacets have been favored by many authors for their ability
to represent a wide range of surfaces [WMLT07, Hei14, JdJM14].
They are based on the product of three functions:

1. The BSDF f µ associated with the microfacets, often considered
as purely specular in most cases [CT82, BSH12], though some
authors have also studied non-specular microfacets [ON94,
WMLT07, DHI∗13].

2. The distribution D of microfacet normals describes the surface
roughness, controlling the specular lobe of which our visual at-
tention is very sensitive. This function is crucial in the definition
of a general BSDF representation, and many studies have fo-
cused on its representation [BS63, Sto67, TR75, CTL89, ON94,
Sch94, WMLT07, BSH12, Bur12, LKYU12].

3. The geometric attenuation factor G (or GAF) accounts for mask-
ing and shadowing. It has also drawn much attention since the
pioneering work proposed by Smith [Smi67] and Torrance and
Sparrow [TS67]. Smith’s approach is presently considered as
physically more realistic, and the GAF function should be as-
sociated with the distribution function [Smi67, APS00, BBS02,
WMLT07,Hei14]. This latter can be precomputed [APS00], but
an analytical integration is preferable for a more general use. To
our knowledge the analytical Smith’s formulation of the GAF
has been expressed for only two distributions: Beckmann’s and
GGX.

This paper proposes a normal distribution DST D, which extends
both Beckmann’s and GGX distributions [BS63,TR75,WMLT07],
thanks to a single additional parameter γ. It provides an addi-
tional control on the distribution slope and tail, providing an in-
finite set of configurations. Our function is inspired from the
Generalized-Trowbridge-Reitz distribution [TR75,Bur12], with the
advantage of making it possible to derive the associate analytic
Smith-Bourlier shadowing and masking function as well as impor-
tance sampling. Such a practical generalization has never been pro-
posed in computer graphics to our knowledge. More precisely, the
main contributions of this paper are:

• the definition of a distribution function, corresponding to a bi-
variate Student’s t-distribution in slopes space, which includes
Beckmann and GGX for specific values of γ;
• the derivation of the corresponding analytic Smith-Bourlier geo-

metric attenuation function;
• the mathematical derivation for importance sampling functions,

and anisotropic representations;
• a representation dedicated to discrete values of γ, which is sim-

pler and faster than the general model;
• an approximate function for the general case, which also acceler-

ates the BRDF estimation, making the computation time equiv-
alent to usual distribution functions (such as Beckmann’s and
GGX for instance).

The remainder of this paper is organized as follows: Section
2 sets the notations and the mathematical background; Section 3
provides our distribution function as well as the derived GAF and
the importance sampling functions; Section 5 shows material and

performance comparisons; Section 6 concludes and presents future
work.

2. Background and problem statement

The BSDF f (i,o,n) is defined as the ratio between: (i) The radi-
ance reflected in an elementary solid angle dω of direction o, by
a surface element dS of normal n; (ii) The light flux coming from
direction i in a solid angle dωi on dS (Figure 2):

f (i,o,n)=
dL(o,n)
dE(i,n)

=
dL(o,n)

L(i,n)cosθidωi
.

Figure 2: Geometry of reflexion, based on a surface element dS
of normal n, for an incident light flux coming from direction i and
reflected towards direction o around a solid elementary angle dω.
Microfacet orientation is defined by a normal m.

Microfacet models consider the surface element dS as a sta-
tistical distribution of small facets, each of which is character-
ized by a normal direction m. All the microfacets share a com-
mon local BSDF f µ(i,o,m). The global surface BSDF f thus
corresponds to the integration of all the microfacet contributions
from i to o. The general model is given by the following equa-
tion [TS67, ON94, WMLT07]:

f (i,o,n)=
∫

Ω+(n)

|im|
|in| f µ(i,o,m)

|om|
|on| D(m)G(i,o,m) dm (1)

where D(m) corresponds to the distribution of microfacet normals
m, and G(i,o,m) expresses the geometrical attenuation factor (or
GAF); the notation |im| stands for the positive dot product between
two directions i and m.

The statistical distribution of the microfacet normals D(m) is
a strictly positive function of unit inverse steradian (sr-1), such
that D(m)=0 if m · n 6 0. The sum of the projected micro-
facet areas should be equal to the macroscopic surface, imply-
ing

∫
Ω+(n) D(m)(m.n) dm=1. Several distribution functions have

been proposed in the literature, with the above properties. They
are defined using one parameter [BS63,ON94,WMLT07], or more
[LKYU12, BSH12, Bur12], to control the surface state.

The geometrical attenuation function G(i,o,m) accounts for self-
masking and self-shadowing effects. The widely used function
from Torrance and Sparrow [TS67] makes the assumption that
the micro-surface corresponds to a series of two dimensional V-
cavity profile. This model is mathematically consistent but physi-
cally unrealistic [Hei14]. Nowadays, it is commonly admitted that
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the Smith-Bourlier GAF [Smi67, BBS02] is closest to the physical
behavior of micro-perturbed surfaces. Shadowing and masking are
considered as independent, and the GAF G(i,o,m) is thus approxi-
mated using the product of the same two functions G1:

G(i,o,m)=G1(i,m) G1(o,m). (2)

The most important assumption in the Smith-Bourlier GAF model
is that micro-facets normals are not correlated, even in close prox-
imity. Mathematically, this assumption can be written as follows:

G1(v,m) =
{

G1(v) v ·m > 0
0 v ·m < 0

(3)

It has been used by Ashikhmin et al. [APS00] to derive the follow-
ing expression:

G1(v)=
(v ·n)∫

Ω+(v)(v ·m′)D(m′) dm′
. (4)

Other expressions of this function can be obtained, starting from
the work of Bourlier [BBS02]. Walter et al. [WMLT07] and more
recently Heitz [Hei14] express the normal distribution in the slopes
space P22(p,q):

P22(p,q)=cos4
θm D(m), (5)

where p and q correspond to the surface slopes in the local coor-
dinate system, defining the normal m, such that p2 +q2 =tan2

θm.
The one dimensional distribution of slopes in the incidence plane
is given by:

P2(q)=
∫ +∞

-∞
P22(p,q) d p. (6)

Finally, G1(v) is obtained by the integration of P2:

G1(v)=
1

1+Λ(v)
, (7)

where Λ(v)= 1
µ
∫ +∞
-∞ (q -µ)P2(q) dq and µ=cotθv. A formal proof

of these derivations is given by Heitz in [Hei14].

Note that this GAF version is used by most rendering systems,
though the discussion proposed by Ross et al. [RDP05] or Heitz
et al. [HBP13] expresses correlated versions between masking and
shadowing, considered as physically more plausible. In this paper,
all the renderings are made with the uncorrelated version of the
GAF only, and the additional material file provides the mathemati-
cal developments and some results with a correlated GAF.

For computer graphics, Beckmann’s distribution [BS63] and
GGX [TR75, WMLT07, Bur12] are the most popular functions.
They can be derived analytically for the Smith-Bourlier GAF de-
scribed above, and they are also interesting for importance sam-
pling since the cumulative distribution function associated with
D(m)|mn| can be analytically expressed and inversed. GGX dis-
tribution exhibits a thinner bell shape with a longer tail than that of
Beckmann. This latter property induces unusual BSDF behavior for
GGX at grazing viewing angles but it is appreciated for other pur-
poses such as fitting measured data. GGX introduced in computer
graphics by Walter et al. [WMLT07] actually corresponds to the
distribution proposed by Trowbridge and Reitz [TR75] and gener-
alized by Burley [Bur12]. This latter distribution, denoted as GTR,
uses an additional parameter γ which allows to control the tail of the

normal distribution curve. This shape control feature is mandatory
to represent more complex micro-surface distributions, as pointed
out by Hoffman [Hof16].

DGT R(m)=
(γ -1)(σ2 -1)

π(1-σ2 -2γ) cos2γ θm (σ2 +tan2 θm)γ
. (8)

When γ=2, the GTR distribution is exactly the GGX case. Un-
fortunately, to our knowledge, GTR distribution has no analytic
masking function (except for the GGX case mentioned above).
This paper fills this gap with a new formulation compatible with:
(i) The analytic Smith-Bourlier masking function; (ii) Importance
sampling. In addition, our distribution function naturally converges
towards Beckmann’s when γ→∞, contrary to GTR.

3. Student’s t Normal Distribution

In addition to the GTR distribution, some authors have addressed
this question of shape control [BSH12, BM14, HP15], but none of
them provide an analytical derivation of the Smith’s GAF. We aim
at proposing a family of distributions associated with an analytical
Smith’s GAF and importance sampling functions. Our solution is
inspired by GTR, with the following normalized general expres-
sion:

DG(θm)=
(C−1)B

πcos4 θm
(
1+B tan2 θm

)C , (9)

with B 6= 0 and C 6= 1. In the slopes space, this family corresponds
to the standard bivariate Student’s t-distribution:

PG
22(p,q)=

(C−1)B

π
(
1+B(p2 +q2)

)C , (10)

where B and C control the shape of the distribution. When B= 1
σ2

and C =2, DG exactly corresponds to GGX, and when C → ∞, the
product BC tends to 1

σ2 and DG tends to Beckmann’s distribution.
A detailed discussion and the mathematical analysis are provided
in the additional file.

This representation also includes the Hyper-Cauchy defini-
tion (with C =γ and B= 1

σ2 ), first introduced by Wellems et al.
[WOB∗06], and used by Butler and Marciniak [BM14] for fitting
measured BRDFs. This latter includes GGX when γ=2 and be-
comes a dirac distribution when γ→∞; Beckmann’s distribution
does not appear. In practice, when γ increases, the surface becomes
smoother, which already corresponds to the role of the roughness
parameter σ. This reduces the interest of this additional parameter
γ for the shape control of the distribution.

Instead, we propose to use B= 1
σ2(γ−1) , and the resulting new

sub-family of distribution of normals is denoted as STD in this pa-
per (standing for Student’s T-Distribution):

DST D(m)=
(γ -1)γ

σ
2γ -2

πcos4 θm
(
(γ -1)σ2 +tan2 θm

)γ , (11)

where γ > 1 controls the shape of the distribution bell. Statistically
speaking, γ represents the number of samples modeled by a bivari-
ate Student’s t-distribution. When γ=2, STD remains equal to GGX
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and when γ→∞, STD still tends to Beckmann’s distribution (us-
ing a Taylor series, as shown in the supplemental material), con-
trary to Hyper-Cauchy. The additional material file contains further
discussions concerning the general distribution (Equations 9 and
10), as well as the derivations for the corresponding Smith’s GAF.

In practice, we use γ=40 for a close approximation of Beck-
mann’s distribution (see Section 5). Figure 1 illustrates some ex-
amples of the visual appearance variations according to γ. Figure 3
shows the general shape of the slopes distribution and the GAF, for
several values of γ and σ.

1 1

Figure 3: Distribution of slopes P22 for STD (first row, in log scale)
and corresponding G1 function (second row), for different values of
γ and σ. Each curve corresponds to a value of γ: When γ=2, STD
corresponds mathematically to GGX.

3.1. Shadowing and masking

The analytic Smith-Bourlier GAF associated to our distribution is
derived according to the mathematical process detailed by Heitz
in [Hei14] and summarized in Section 2. Equation 11 is expressed
in the slopes space:

PST D
22 (m)=

(γ -1)γ
σ

2γ -2

π
(
(γ -1)σ2 +tan2 θm

)γ , (12)

Λ(v) is defined as:

Λ(v)=
Γ(γ - 1

2 )

Γ(γ)
√

π

(
(γ -1)γ

2γ -3
Sγ

1(µ)+
√

γ -1Sγ

2(µ)
)

-
1
2
, (13)

where µ=cotθv, and

Sγ

1(µ) =
σ((γ -1)+ µ2

σ2 )
3
2 - γ

µ
, (14)

Sγ

2(µ) =
µ
σ
× 2F1

(
1
2
,γ -

1
2

;
3
2

;
-µ2

(γ -1)σ2

)
, (15)

with Γ(x), the Eulerian gamma function and 2F1, the Gauss hy-
pergeometric function. Finally, the GAF function GST D

1 is written

using Equation 7. Figure 3 illustrates the curves corresponding to
PST D

22 (first row) and GST D
1 with several values of γ and σ. GST D

1
varies more widely for 1.5 < γ < 4 which highly impacts the visual
appearance, while the change is smoother otherwise.

Note that STD should be used in practice only with γ ∈]1.5,∞),
since GST D

1 is undefined for γ < 1.5. When γ→ 1.5, STD tends
to the Cauchy distribution and the GAF value tends to 0. In this
case, the material would correspond to microfacets either aligned
with or perpendicular to the surface, their area is infinite for γ=1.5
(which is physically not plausible) and light multiple reflections
would be predominant. As previously mentioned, when γ=∞, STD
is actually a Gaussian distribution in slopes space corresponding to
that of Beckmann’s normal distribution.

3.2. Isotropic Importance sampling

Importance sampling should also be provided with any BRDF
model used in computer graphics. The cumulative density fonc-
tion (cdf) associated with p(m)=DST D(m)|mn| can be defined and
inverted analytically. The resulting formulation is:

ϕ = 2πξ1, (16)

θ = arctan

(
σ

√
(γ−1)

(
(1-ξ2)

1
1- γ -1

))
, (17)

with (ξ1,ξ2) two uniform random numbers in [0,1)2.

3.3. Anisotropy

Our STD distribution function is shape invariant † [Hei14, Hof16]
thus easily derivable for anisotropic materials:

DST D
aniso(m)=

1

πσxσy cos4 θm

(
1+ tan2 θm

γ -1

(
cos2 ϕm

σ2
x

+ sin2 ϕm
σ2

y

))γ , (18)

where σx and σy correspond to the roughnesses associated with
the surface local coordinate system. The mathematical derivations
for the geometric attenuation function are the same as those of the
isotropic case, the Λ(v) function is obtained thanks to Equations 14
and 15 using:

σ

µ
=tanθv

√
σ2

x cos2 ϕv +σ2
y sin2

ϕv.

In the anisotropic case, the cdf can also be defined and inverted
analytically, leading to:

ϕ = arctan
(

σy

σx
tan(2πξ1)

)
, (19)

θ = arctan

√
(1-ξ2)

1
1- γ -1

A
, (20)

with

A=

(
cos2

ϕ

σ2
x

+ sin2
ϕ

σ2
y

)
γ -1

,

and (ξ1,ξ2) two uniform random numbers in [0,1)2.

† i.e. it can be represented in the form f ( tan θ

σ
)/(σ2 cos4 θ)
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4. Specific functions and GAF approximation

The analytical Smith-Bourlier GAF associated with STD makes
use of Γ and 2F1 functions, as shown in Equations 13 and 15. These
functions are complex to evaluate and increase the computation
time. This is why we propose some simple alternatives with dis-
crete values of gamma and an approximate solution.

4.1. Functions using discrete values of γ

Γ and 2F1 can be replaced without approximation by finite sums.
These latter finally simplify, and the Λ function becomes:

Λ(v)=(γ -1)A1

σ

µ

√
γ -1

(1+ µ2

(γ -1)σ2 )
3/2 - γ

2γ -3
-A2

 , (21)

where two cases can be distinguished for integer and half integer
values of γ (i.e. γ∈ {N | γ > 1} and γ∈ {n+1/2 | n∈N & n≥ 2}
respectively), for A1 and A2.

Integer values of γ:

A1 =
(2γ -2)!

4γ -1(γ -1)!2 ,

and

A2 =
γ -2

∑
k =0

(
γ -2

k

)
(-1)k

2k +1
A3(k),

A3(k) = 1-

 µ

σ

√
(γ -1)+ µ2

σ2

2k +1

.

Half integer values of γ:

A1 =
2
π

γ−3/2

∑
k =0

(
γ−3/2

k

)
(−1)k

2k+1
,

and

A2 =
1

22γ−4 A21 +
1

22γ−3 A22,

where:

A21 =
γ−5/2

∑
k =0

(
2γ−3

k

)
1

2γ−3−2k
×(

−sin

(
(2γ−3−2k)arctan

(
µ√

(γ−1)σ

)))

A22 =

(
2γ−3

γ−3/2

)(
π

2
− arctan

(
µ√

(γ−1)σ

))

4.2. GAF approximation

The general model can also be approximated closely using the fol-
lowing rational fractions instead of Equation 15:

Sγ

2(z)≈ F21(z)(F22(γ)+F23(γ) ·F24(z)) , (22)

where z=µ/σ and

F21(z) =
1.066z+2.655z2 +4.892z3

1.038+2.969z+4.305z2 +4.418z3 ,

F22(γ) =
14.402-27.145γ+20.574γ

2 -2.745γ
3

-30.612+86.567γ -84.341γ2 +29.938γ3 ,

F23(γ) =
-129.404+324.987γ -299.305γ

2 +93.268γ
3

-92.609+256.006γ -245.663γ2 +86.064γ3 ,

F24(z) =
6.537+6.074z -0.623z2 +5.223z3

6.538+6.103z -3.218z2 +6.347z3 .

(23)

Figure 4 illustrates the computation time differences for our ex-
pressions of STD (real, integer, half integer and approximate) and
two configurations corresponding to Beckmann’s (exact and ratio-
nal approximation [WMLT07]) distributions. The first row shows
the computation time obtained using random evaluations of the dis-
tribution, the GAF and importance sampling; this process only ac-
counts for the computation time corresponding to the BSDF evalua-
tion. The second row corresponds to the computation time observed
for a practical rendering configuration of a rough gold material,
including ray-scene intersection, path tracing multiple reflections,
light sources sampling, etc. The curves illustrate the efficiency of
both the integer exact configuration and the approximate GAF rep-
resentation, with computation time slightly higher than those ob-
tained with Beckmann’s distributions. However, contrary to our ex-
pectations, the half-integer version can even be slower than the ex-
act formulation when γ or σ increase.
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Figure 4: Distribution, GAF and sampling computation time with
variations of γ and σ, (first row) corresponding only to the BSDF
evaluation, and (second row) in a practical rendering test case in-
cluding Monte Carlo path tracing, with a rough gold object.

The relative error corresponding to the approximate model com-
pared to the exact formulation is illustrated in Figure 5, where the
GAF difference is integrated over the hemisphere. In the worst case,
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the cumulated error is less than 0.7%. Figure 6 illustrates the error
distribution for a given scene, according to σ and γ. The differences
are very low and difficult to distinguish for an observer. The differ-
ence images corresponding to the right column essentially exhibit
noise due to Monte Carlo variance. We believe that the approxi-
mation of STD we propose corresponds to a good compromise in
terms of both visual quality and performances.

Figure 5: Relative error of our approximate G1 function according
to σ, integrated over the hemisphere and given in percentage. The
maximum error value is below 0.7%.

5. Results

STD and its associated Smith-Bourlier GAF have been imple-
mented in the Mitsuba renderer [Jak10]. Special functions Γ and
2F1 appearing in Equations 13 and 15 come from the GNU Scien-
tific Library [Gou09]. The results presented below have been pro-
duced with an intel Core i7-3740QM, 2.7 GHz CPU.

Figure 7 illustrates the panel of materials corresponding to a
rough aluminium surface (modeled by the rough conductor mate-
rial implemented in Mitsuba). The most visible changes correspond
to γ ∈]3/2;4], for a set of roughness values σ. When γ→ 1.5, the
surface becomes darker, due to the GAF function. As explained in
Section 3.1, in this case the surface is covered with many almost
vertical microfacets. When increasing σ while decreasing γ, a part
of the light energy is not taken into account (no multiple reflec-
tions). Figure 9 illustrates the percentage of reflected energy when
ignoring multiple scattering between microfacets. This percentage
is estimated according to an energy balance test which should be
equal to 1 when the whole energy is reflected by the surface:∫

Ω+(i)

∫
Ω+(o)

f (i,o,n)|in||on|do di=1, (24)

where f (i,o,n)= F(i,h)D(h)G(i,o,h)
4|ih||oh| is the BSDF of a rough specu-

lar material, with h the half angle vector between i and o and the
Fresnel term F =1, which corresponds to perfectly reflective micro-
facets. Equation 24 is generally not verified in practice when single
scattering alone is used; GGX distribution suffers from this more
than Beckmann’s distribution due to its higher tail. In any case, for
low values of γ and high values of σ, light multiple scattering be-
tween microfacets should be handled but few previous work deals
with this issue. The method proposed by Heitz et al. [HHdD16]
is the latest and can also be applied with STD but this approach
is based on the importance sampling from visible microfacets nor-
mals proposed by Heitz and d’Eon [HD14]. This latter is more dif-
ficult to provide analytically, since the STD cumulative distribution

Approx.Exact Relative Diff.

Figure 6: Visual comparison between exact and approximate
model with a rough copper material. False color images represent
the relative difference between both renderings and the RMSE is
given in the top right corner of each image.

function cannot be analytically inversed. The authors recommend
to precompute a set of values for this function according to σ, and
store them in a table. However, for STD an additional 2D table is
required to deal with the values of γ. This question is discussed in
the supplemental material file, which also contains a procedure for
pseudo-visible normals sampling for a more practical use of STD.

Figures 1 and 8 illustrate the use of STD with several opaque
or transparent materials (rough gold, rough copper, rough plas-
tic, rough diamond and rough anisotropic aluminium). Note that
the loss of energy due to multiple scattering is partially masked in
rough plastic material by the diffuse reflection component.

Mathematically, STD tends to Beckmann when γ → ∞ (Fig-
ure 3). In practice a good approximation of this distribution can
be obtained for γ > 30 (see Figure 10). The visual difference is not
visible and the error for γ=40 is below 1% when σ < 1.2.

STD covers an infinite set of microfacets configurations from
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Figure 7: The visual impact of the STD distribution and its GAF
when the tail parameter γ and the roughness parameter σ change
for a rough conductor material.

γ > 1.5 to Beckmann (γ → ∞) and equal to GGX when γ=2.
This feature is interesting for fitting measured materials since
the distribution bell can be adapted. We have fitted the complete
MERL database [MPBM03], using a genetic algorithm based on
the normalized absolute distance between data and the model to
fit. The fitting method is described more precisely in the supple-
mental material. Figure 11 provides a comparison of the final mea-
sured error resulting from the fitting of all MERL data, using sev-
eral microfacet distributions: Beckmann [BS63], GGX [WMLT07],
Löw [LKYU12], and STD. The complete BRDF model used cor-
responds to Cook-Torrance [CT82] representation: A Lambertian
term associated with a distribution of specular microfacets. As ex-
pected, STD distribution always provides lower errors compared
with that of Beckmann and GGX. Besides, Löw’s BRDF provides
a lower error for some glossy materials, but STD remains better in
most cases. Löw’s model corresponds to a different representation,
which uses Torrance-Sparrow GAF [TS67] (the Smith GAF cannot
be derived analytically), with another class of distributions, espe-
cially designed for fitting MERL materials. Note that the fitting

process highly depends on the chosen error function, and we be-
lieve that the process of fitting measured data still remains an open
problem, which depends on the target application. For instance, a
lower error during the fitting process does not always ensure visu-
ally better images (as illustrated for several data in the supplemental
material).

6. Conclusion and future work

Microfacet based BSDFs are widely used in the computer graph-
ics community since they are physically plausible, controlled by
only few parameters, and intuitive to manage. They are built upon
a statistical distribution of small facets, which should be carefully
chosen, so as to manage the associated geometric attenuation factor
and importance sampling schemes. These constraints are met with
only few distributions, namely Beckmann’s and GGX.

This paper presents a new more generalized distributions fam-
ily of microfacets normals, based on the bivariate Student’s t-
distribution in slopes space. It particularly details one sub-family,
denoted as STD, which meets the above constraints and offers an
infinite set of configurations including both Beckmann’s and GGX:
We provide the analytical geometric attenuation factor from Smith
and importance sampling.

In addition, for performance considerations, we propose practi-
cal formulations of STD with discrete values of γ and an approxi-
mate version. This latter can be used for interactive rendering sys-
tems without noticeable loss of quality.

As mentioned above, multiple scattering in microfacets remains
challenging to handle and strongly impact the visual aspect of a
material. We wish to investigate this issue and propose if pos-
sible an analytical solution with STD according to the approach
proposed in [HHdD16]. We would also like to propose a formu-
lation of the importance sampling for STD, based on the visible
normals [HD14].
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Figure 8: Various glossy materials rendered with STD: (top left) Rough metallic, gold; (top right) Rough plastic, with a Lambertian chroma;
(bottom left) Rough dielectric transparent diamond; (bottom right) Anisotropic rough metallic, aluminium. Isotropic materials are defined
using σ=0.3 and several values for γ from left to right: γ=[1.51,1.65,2,4,10,50], while anisotropic materials are defined using σx =0.7 and
σy =0.3, for the same values of γ.
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Figure 11: Normalized absolute difference (fit. error) for MERL database fitting, using specular dielectric microfacets (real refractive index
and a constant Lambertian term). Comparisons (relative differences) between: (i) Measured data; (ii) Fitted GGX; (iii) Fitted Beckmann;
and (iv) Fitted STD.
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